【
仪表网 仪表产业】视觉技术在人工智能体系中有很重要的地位,人工智能落地应用主要有图像识别、语音合成、机器翻译等感知类任务上的应用和产业应用场景。
视觉技术又可分计算机视觉和
机器视觉,应用场景的不同是计算机视觉和机器视觉的最根本差别。
计算机视觉模拟人眼的功能,而且更重要的是使计算机完成人眼所不能胜任的工作。而机器视觉则是建立在计算机视觉理论基础之上,偏重于计算机视觉技术的工程化,能够自动获取和分析特定的图像,以控制相应的行为。
与计算机视觉所研究的视觉模式识别、视觉理解等内容不同,机器视觉技术重点在于感知环境中物体的形状、位置 、姿态 、运动等几何信息 。两者基本理论框架、底层理论、算法相似,只是研究的最终目的不同。所以计算机视觉一般情形普遍适用,而机器视觉更多用于工业上。
计算机视觉在落地场景上应用较多,现在已扩展到新兴领域,例如汽车、医疗保健、零售、机器人、农业、无人机和制造业等。
一个典型的视觉应用系统包括图像捕捉、光源系统、图像数字化模块、数字
图像处理模块、智能判断决策模块和机械控制执行模块。
视觉技术通过机器代替人眼进行测量和判断,其精准识别比人眼更具准确性,尤其随着深度学习、3D视觉技术、高精度成像技术和机器视觉互联互通技术的持续发展,机器视觉的性能优势将进一步加大,发展前景可期。
无论是计算视觉还是机器视觉,都是视觉技术的发展和延伸,也是人工智能范畴重要的前沿分支之一,随着我国各行各业对采用图像和视觉技术的工业自动化、智能需求开始广泛出现,视觉技术逐步开始了工业现场的应用,市场规模将会进一步扩大,迎来快速增长期。
未来,视觉技术将进一步发展,有望落地更多的行业和产业,带来产业的升级转型,促进企业的智能化发展。